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On the finite difference between divergent sum and integral 

G Barton 
University of Sussex, Brighton, BN1 9QH, UK 

Received 7 November 1980 

Abstract. We consider how, in a reasonably motivated manner, to define and then evaluate 
unique finite differences between individually divergent sums S = X" f(n) and integrals 
I = J " d n f ( n j .  Thisisdonebyfirstreplacingf(n) byf (n jh)=f(n jg(n jh) ,wheregisacutof f  
function ( g ( n  + WlA) = 0) which obeys the permanence condition g ( n  IA + C O )  = 1, and then 
transforming ( S  - I )  into some convenient explicit functional 9 { f ( n  IA)} which admits 
l i m h d 3 { f ( n / A ) } =  9{limA+mf(nlA)}= 9{f(n)},  where the final expression converges. 
There ought but there seems not to exist a convenient yet reasonably general theory for 
identifying admissible classes of summands and cutoffs and for deriving 9{f}, even though 
physicists have long dealt with simple cases ad hoc. No general theory is supplied here 
either, but three specialised prescriptions are presented for 9{f}; one based on the 
Abel-Plana formula, for suitably analytic f and g ;  another, less convenient, based on the 
Euler-Maclaurin formula for merely differentiable f and g ;  and the unconventional 
'E-averaging method' which this writer has used before but without detailed justification; it 
avoids the explicit introduction of a cutoff, and is especially convenient when it can be 
implemented at all, namely when S and I with finite limits are expressible in terms of 
familiar functions. The mutual compatibility of these methods is discussed. An example 
illustrates how they break down if the underlying cutoff violates some of the necessary 
conditions, even though it obeys the permanence condition and even though 9 { f ( n ) }  
converges. As illustrations and for the record, explicit differences are worked out for 
logarithmic, power-law, and exponential summands. 

1. Introduction 

In calculations on electromagnetic fields confined to limited regions, one often needs to 
sum certain functions of frequency over all normal modes, and then to subtract the 
corresponding sum (or rather integral) for an equal volume forming part of unbounded 
space. We shall symbolise such differences by D. For instance, when the summand is 
the quantum zero-point energy (i.e. half the frequency), D determines the Casimir 
effect whose archetype is the attraction between parallel perfectly conducting plates 
(Casimir 1948, see also Power 1964). When D represents the changes in the energy 
levels of a neutral molecule inserted between such plates (Barton 1970, 1979a), the 
summand is more complicated, containing contributions from both the electrostatic and 
the transverse-photon Green functions; and somewhat similar summands enter the 
recent calculation by Unwin and Critchley (1980) of the difference between the 
ground-state Lamb shifts of an atom situated in ordinary space and in certain multiply- 
connected spaces. 

Unfortunately, in practically every interesting case the sum and the integral in 
question, taken separately, diverge at high frequency; hence some further physically 
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1010 G Barton 

motivated prescription is needed to make D mathematically well-defined and calcul- 
able. For any given system it is usually not too difficult to devise a satisfactory 
prescription ad hoc, by analysing just how the normal-mode decomposition of the field 
propagators enters the formulae, and then subtracting the corresponding expression 
constructed with the unconfined (free-space) propagators (see for instance Brown and 
Maclay 1969, Unwin and Critchley 1980; and in the spherical-shell problem, Milton et 
a1 1978). But there is another point of view from which, paradoxically, such a detailed 
approach overshoots the mark: for often one expects on physical grounds that modes 
with very high frequencies (i.e. short wavelengths) should be irrelevant, and that, 
subject only to some weak restrictions, any method should serve which eliminates their 
contributions. For example, at short wavelengths any conducting plates become 
transparent, and one feels that the precise manner in which transparency sets in should 
be irrelevant, say to the Casimir effect, at plate separations large compared with the 
wavelengths at which it does set in. Often in such cases it seems natural to multiply the 
summand by some cutoff function (convergence factor), to calculate the requisite 
difference between sum and integral, and then to let the cutoff frequency recede to 
infinity (take the no-cutoff limit). For instance, this is the attitude to the Casimir effect 
taken by Fierz (1960) and Lukosz (1971), who adopt a specially convenient cutoff 
(namely an exponential), clearly implying that no generality is lost by this specific 
choice; it is also the attitude taken by Boyer (1968) to the case of a spherical shell. 

Appeal to a cutoff immediately raises two interrelated problems. The first is a 
question of principle: given the summand, just how weak mathematically can the 
restrictions on classes of physically reasonable cutoff functions be, while still guaran- 
teeing that all cutoffs in the class yield the same result for D in the no-cutoff limit? The 
second problem is more practical: to find formulae from which one can actually evaluate 
the no-cutoff limit of D without any explicit mention of the cutoff. This writer is not 
equipped to tackle the first problem with the generality one could wish for, and the 
present paper is devoted mainly to the second problem. However, it turns out that by 
solving the second problem subject to relatively stringent conditions (differentiability or 
analyticity) on both cutoff and summand, some limited light can be cast even on the first 
problem. 

In its simplest form, i.e. for one-dimensional rather than multiple sums, the 
mathematical problem so set up is, luckily, self-contained, and here we shall not pursue 
its implications for other and more difficult questions about surface effects in fields 
confined to multidimensional finite regions of various shapes, and obeying various 
boundary conditions; for these wider problems see for instance Balian and Bloch (1970, 
1971, 1972); Balian and Duplantier (1977, 1978); Barton (1979b); and especially the 
clear, comprehensive and fully referenced review by Baltes and Hilf (1976). 

Section 2 formulates the mathematical question, after a brief sketch of its pro- 
venance, and introduces the cutoff functions which play a crucial role in the argument 
although they are absent from the final expressions. Since we lack a general theory, we 
can provide only partial answers, by establishing various explicit formulae for D ; their 
region of validity, and the method for obtaining them, naturally depend on the rate of 
growth of the summand, and on the assumptions made about its smoothness and about 
the cutoff function. Section 3 derives a generalised form of the Abel-Plana formula, 
which is perhaps the most useful single result, and which solves the problem subject to 
fairly strong assumptions about analyticity. Section 4 describes a new and uncon- 
ventional cutoff procedure called the ‘ E  -averaging method’. This is usually the easiest 
method to implement provided that, without cutoff factors, the partial sum and integral 
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can be found in terms of familiar functions. The writer has used this method before, 
though without detailed justification (Barton 1970, 1979b; Babiker and Barton 
1972a,b); its compatibility with the Abel-Plana method is discussed briefly at the start 
of 8 4, and its links with a third method in appendix 1. Appendix 1 describes this third 
method, based on the famous Euler-Maclaurin formula, and applicable to differenti- 
able functions with suitably bounded higher derivatives. Though less flexible than the 
two preceeding methods this has perhaps been the most widely used, probably because 
of its distinguished ancestry, and because often it does readily yield the asymptotic 
expansion of D in powers of some suitable parameters like the size of the system, which 
may be all that is required. Further, the Euler-Maclaurin prescription is interesting as a 
matter of principle, because it can yield convergent expressions for D under weaker 
conditions than the Abel-Plana method, even if the result is less convenient for actually 
evaluating D. The appendix also shows that the &-averaging and the Euler-Maclaurin 
methods are compatible; the compatibility of the latter with the Abel-Plana method is 
discussed by Hardy (1949). Section 5 illustrates the methods of 9 0  3 and 4, and derives 
explicit expressions for D in the simplest and most commonly required cases of 
logarithmic, power-law, and exponential summands. Some illustrations of the Euler- 
Maclaurin method are given in appendix 1. Appendix 2 gives a cautionary example of 
an illegitimate cutoff function. 

Of course yet other methods can be and have been developed, e.g. from the Poisson 
summation formula (see also Unwin and Critchley 1980); but, though useful in some 
problems, they are generally less flexible than those considered here. 

Finally we risk stressing again at the start what will certainly become obvious by the 
end of the paper, that for the differences in the title we have failed to supply as general 
and elegant a theory as they deserve, and as deeper mathematics could no doubt 
provide. From such a theory the partial results given here should eventually follow as 
easily recognisable special cases, and the compatibility of the various explicit prescrip- 
tions for D should be demonstrable from the outset, unhedged by the various special 
provisos on which the arguments in this paper have to rely. However, the summands 
that we can accommodate, and the restricted classes of cutoffs specified as we go along, 
do more than cover the problems that have occurred so far in applications. 

2. Formulation of the problem 

To see the background of the problem, consider for simplicity the scalar wave equation 
in one dimension, a2+/ax2 - c-’ d 2 $ / a t 2  = 0, subject to periodic boundary conditions? 
over a length L :  $(O, t )  = $(L, t ) .  The normal modes are 4, = exp i(k,x -ant), where 
k, = 2 m / L  and R, = clk,l,  Defining, for any function F (R)  of frequency, F(R,) = 
f (n) ,  a sum of F over all modes reads X2=--mf (n ) .  If, as we now assume, F is a smooth 
function of R, then, as L increases and the spacing between successive allowed values of 
R shrinks indefinitely, X% f(n) may be replaced by 1% dn f ( n )  = 

(L/2.rr) 5% dkF(cIk1); the last form shows that in the limit the sum becomes propor- 
tional to L, which is the physical reason why we interpret the integral 5 dn f(n) as the 
contribution to the ‘sum’ over all modes ascribable to each unit length of the unbounded 
x axis. For convenience we shall work with half this sum; we call it S,  the corresponding 
+ Non-scalar fields, or different boundary conditions, or both, make a great difference in a wider context, (cf 
the fourth paragraph of 5 l),  but no essential difference to the specific mathematical question to be considered 
here. 
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integral I, and their difference D, all these being functionals of f(n). (When the 
functional dependence of D on f needs stressing, we shall write D = 9{f}; otherwise we 
ease the notation by retaining the symbol D.) Thus: 

The primed sum, and a doubly-primed sum needed later, are defined by 
m m 

1' f(n) = if@) + c fh), 
n=O n = l  

M 

1" = t f ( N )  + y1 f(n) +if(M). (2.3) 
n = N  h = n + l  

Naturally, the definition (2.1) makes sense only if S and I converge?. But in many 
physically relevant cases they diverge; simple examples of f ( n )  which we shall consider 
are 

(2.4) 
where 7, p ,  CY are constantst. Then the problem is modified by replacingf(n) in (2.1) by 

f(nlA) =f (n)g(nIA)  (2.5) 

( n  +TI-]; In(n + q); n P ;  exp(cwn); exp(nP), 

and (2.1) itself by 

The cutoff function g ( n l A )  may depend on one, or on several, or even on an infinity of 
parameters collectively denoted by the single index A ;  it must be a sufficiently 
differentiable function of n, and together with its derivatives g"'= dsg/dns it must 
satisfy several conditions. Some of these conditions we state now; others, peculiar to 
particular methods for obtaining D, will emerge retrospectively later on. 

First, it must be possible to define a no-cutoff limit, represented symbolically as 
A +CO, with the property§ 

g(nlA)+l  ( 2 . 7 ~ )  

g 'S ' (n IA)+O,  s = 1, 2, 3 , .  . . (2.76) 

Second, as n +CO for fixed A ,  g and the g( ' )  must vanish fast enough to ensure the 
convergence of sums and integrals where they occur. Third, in the end-result of each 
method (as symbolised in equation (2.8) below) such convergence must be uniform in A ,  
this being in effect a retrospective condition on g. In § 3, certain analyticity conditions 

] as A + CO for fixed n. 

i Some elementary methods for evaluating D in such cases are reviewed by Boas and Stutz (1971); for others 
see Hardy (1949). 
i: In practice, a parameter like 17 is usually proportional to the system size L, since the expression ( n  + 7 )  
would enter the original summand F as ( k ,  + K )  = (2?r/L)(n + LK/27r), with K some characteristic dimen- 
sional parameter independent of L. Similarly a would be proportional to L-' .  Consequently, extreme values 
of L call for asymptotic approximations for D. 
5 The conditions (2.7) are evident analogs of the familiar 'permanence' conditions of summability methods, 
ensuring that in the limit the cutoff prescription does not alter the value of D in cases where S and I are well 
defined even without a cutoff. Unfortunately the writer has not succeeded in extracting from the analogies 
with summability theories any help with the present problem 
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will be imposed as well. Perhaps the most popular example of a cutoff is exp(-a//\), 
with A +CO understood literally. 

With the cutoff, S(A), I ( A )  and D(A)  in (2.6) are all finite but functions of A .  The 
general mathematical problem would be to explore the most liberal conditions on f(n ) 
and g ( n l A )  under which limA,,D(A)=D exists and has a finite value independent of 
any further details of g. But, as explained in § 1, here we pursue only a more modest 
goal: namely, under suitable conditions on f and g, to transform (2.6), while A is still 
finite, into some more convenient explicit functional of f :  

such that 

lim 9 { f ( n  IA)} = 9{ lim f ( n  IA)} = 9{f (n )}  = D 
A +oo A - 3 0  

makes sense. In particular, the final form 9 { f ( n ) }  must converge, which is a condition 
on f(n) alone; but beyond this, conditions on g ( n  IA)  are implied by the existence of the 
leftmost limit, and by the postulated uniformity of convergence which legitimises the 
first equality in (2.9). Appendix 2 illustrates what can happen if these less obvious 
constraints are ignored. For classes of summands f and cutoffs g for which our 
programme can be implemented, it provides a partial answer to the more general 
question too, since the end result in (2.9) is manifestly independent of the underlying 
g(n1A). Nevertheless the physical relevance of the result must remain doubtful unless a 
reasonably wide class of cutoffs can be identified at least in principle. 

As a preliminary it is often convenient to subdivide D(A) in (2.6) as follows, at some 
point N independent of A (L and R stand for left and right): 

D ( A )  =DL(NIA)+DR(NIA), (2.10) 

(2.1 1) 
N N 

DL(NIA) = 1” f(n / A  ) - IO dnf(n / A  1, 
n = O  

(2.12) 

Observe that D(A)  =DL(wlA) =DR(OIA). In D, with its finite upper limit N the 
no-cutoff limit can be taken trivially: 

(2.13) 

The point is that any simplifying assumptions about f need apply only for n 2 N. For 
instance, in this paper we need not pursue the implications of any singularities inf(n)  at 
finite n, such for instance as ensue if the parameter 77 in (2.4) is negative; though these 
can be important in applications (Barton 1970), from our present point of view all such 
singularities can be confined to the nonproblematic component DL of D. Similarly, we 
are not now interested in any divergences as n + 0, and in case of difficulty at the origin 
(e.g. if f(n) is an inverse power) we simply confine attention to DR with N = 1, say:. 

Two general points need stressing. First, in defining the problem the summandf(n) 
is to be specified for (at least) all real positive n ; in other words, both the summand of S 

t We shall write DR(N/m) simply as D R ( N )  whenever the context clearly identifies the argument as N rather 
than A .  
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and the integrand of I are given a priori, and we need not struggle to render unique the 
continuation of f ( n )  from integer to continuous n . t  

Second, we must note an important logical reservation in cases where the rate of 
growth of the summand at infinity is controlled by a numerical parameter, like p or a in 
the examples (2.4). If D can be evaluated in closed form as a function of this parameter, 
say p ,  in a region where S and I, separately, converge, then it becomes tempting to jump 
to the conclusion that analytic continuation in p must yield the correct value of D for all 
values of p .  Although borne out in the simple examples we study in 8 5, at present this 
expectation lacks the force of argument, since on physical grounds D is defined through 
the no-cutoff limit, as explained earlier in this section, and since analytic continuation in 
such a parameter has not so far been justified from :he basic definition, except a 
posteriori in special cases. To provide a reasonably general justification under stated 
conditions is an interesting problem but beyond our scope here. Meanwhile, divergent 
cases must be investigated in their own right, even when analytic continuation happens 
to provide a heuristic preliminary guess. 

3. The generalised Abel-Plana formula 

The basic idea is to establish a convenient formula for D;>.(NlA), equation (2.12), by 
requiring f ( n  IA) ,  and therefore f and g, to have rather strong analyticity properties, as 
specified below. For mathematical details we refer to Hardy (1949), who derives the 
Abel-Plana (AP) formula (3.4) in full; here we shall eventually need the generalised 
form (3.3), of which (3.4) is a special case. 

Let f ( z  / A )  be an analytic function of z = x + iy,  free of singularities (except at 
infinity, when the no-cutoff limit is taken later), either in the positive half-plane x 3 xo 
for some xo< N ( N  is some non-negative integer), or at least to the right of the wedge 
formed by the lines y = *(x - xo) tan q5,O < q5 G x/2,  where the requisite values of q5 will 
appear from the context; and let f(zlA) vanish fast enough for subsequent contour 
integrals to draw no contributions from their arcs at infinity. 

The integral on the right of (2.12) can now be rewritten as half the sum of two other 
integrals, running rightwards from z = N to infinity along straight lines L ,  of slopes 
* tan q5 respectively: 

Next, the as yet unprimed sum in (2.12) is rewritten as (2xi)-' 4 dz x cot(xz)f(zlA) 
along an anticlockwise contour enclosing the real axis from z = N to +CO; and this 
contour is then distorted to run from infinity to N + F  exp(iq5) along the line L,, 
anticlockwise along a circular arc of radius E from N + F exp(iq5) to N + E exp i(2x - q5) ,  
and from there to infinity along the line L-. In the limit E + 0 this yields 
a: 

f ( n l A )  =f(NlA)(l-q5/~)+(2i)- '  dp{-e" cot (xp e")f(N+p e"lA) 
l l = N  

+e-''cot(.irp e-")f(N+p e-''IA)}, (3.2) 

where we have used cot x ( N - t - z )  =cot xz.  Substituting (3.1) and (3.2) into (2.12), 

f I n  5 4 we do have to continue the partial sums S(v) = Z',"=, f(n) to continuously variable values of v. 
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including the correction term -f(NIA)/2,  and rearranging, we obtain 

(3.3) 

This is the generalised AP formula, i.e. the AP prescription for the functional 
9{fn IA)} of equation (2.8). Accordingly, the no-cutoff limit DR(Nlm) is obtained 
simply by replacingf(t1A) + f ( t )  on the right of (3.3), provided the result converges; the 
underlying class of cutoffs contains those which have the required analyticity properties 
and which can ensure the convergence of S(A) and I ( A )  as well as the uniform 
convergence of (3.3). Appendix 2 shows what havoc can be created by a cutoff with the 
wrong analyticity properties. 

Most often one uses N = 1 or N = 0; the original AP formula as given by Hardy 
(1949) is the special case with N = 1 and 4 = 77/2, namely 

1 m 

D ~ ( l l a ) = i  lo d p ~ { f ( l + i p ) - f ( l - i p ) } .  (3.4) 

Since D = DR(O) we can, if the result makes sense, write D itself as 

(3.5) 

Section 5 gives explicit applications, but some preliminary examples may help in 
assessing the scope of these formulae. Logarithms and powers are covered by (3.4) or 
(3.5); to verify that satisfactory underlying cutoffs exist, one need think only of 
g = exp(-n/A). These prescriptions cover also exponentials f =  exp[(a + ib)n]  pro- 
vided jbl< 277; but with 161 2 277 they diverge, and so, irremediably, do the generalised 
formulae (3.3) (with f ( z I A ) + f ( z ) )  for any allowed choice of 4(0<4 s ~ / 2 ) ,  In this 
case we are forced to fall back on the &-averaging method described in the next section. 
On the other hand, it is easily verified that (3.3) converges even for f =  exp(anP) with 
real a > 0 and any p > 1, provided we chose 4 so that cos(p4) < 0, i.e. 77 /2p  < 4 < 
3 ~ / 2 p .  With exponential summands it takes a little more care to see that suitable 
underlying cutoffs could be found. Perhaps it is simplest to think of g = e~p[-(n/A)~+'] ,  
with small positive 8 ;  such a 6 restricts the range allowed for 4, but there is no difficulty 
in finally taking the limit S + 0, thus arriving at the choices given above:. 

4. The €-averaging method 

We proceed to describe a somewhat unorthodox method which has some advantages 
over the AP prescription: 

(i) it may have more intuitive appeal; 
(ii) it covers some summands for which the AP prescription diverges, e.g. exp[(a + 

ib)n] with Ibla 2 5 ~ ;  and 

f Taking the limit 8 + 0 + is just a calculational device making i t  easier to evaluate the final integral, whose 
value is independent of 8 ;  this limit has nothing to do with the no-cutoff limit which is taken earlier, namely 
when f(zlh) in (3 .3)  is replaced by f(z). 
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(iii) it is often easier to implement, as we shall see in § 5, especially if one is armed 
with Stirling's formula but lacks a comprehensive table of integrals for dealing with 
those thrown up by the AP prescription. Compatibility with the AP method (when both 
methods converge) is proved here only for the restricted class of summands expressible 
as Laplace transforms, f ( n )  = dsF(s)  exp(sn); then the two prescriptions agree 
because, as we shall see from §5  and from equation (4.10) below, they yield the same 
result for exp(sn). Appendix 1 contains a somewhat more general proof of compati- 
bility with the Euler-Maclaurin method; and we note for completeness that the 
compatibility of the latter with the AP prescription (when both converge) can be readily 
established by adapting the method given by Hardy (1949) (though he spells it out only 
for the case where S and I themselves converge). 

The basic idea is to start with the particularly simple cutoff 

g (n lA)=8(A-n)  (4.1) 

where 6 is the step function ( O ( x  2 1) = 1, 6(x < 0) = 0), and then to seek a way to 
compensate for the obviously unphysical consequences of the sharp step, while still 
benefiting from its simplicity. 

In this section, A denotes a single cutoff parameter; the limit A +CO is understood 
literally, with A increasing continuously; [ A ]  is the integer part of A ,  and we define 

A ~ [ A ] + E = V + + ~  - O < E < ~ .  (4.2) 
._ 

The subdivision into DL and DR is not required here, and we define 

D (A ) = ( f f  - dn) 6 (A - n ) f ( n  ) 
n = C  0 

=(  n=O 2' -[oAdn)f(n)=S(v)-I(A), 

where 

(4.3) 

Note the arguments of S ( v )  and I ( A ) .  
We must now improve on the obvious but naive attempt to obtain D by taking the 

limit A + CO of (4.3) as it stands, for in the interesting cases this limit does not exist. (The 
reader may appreciate the following argument more readily by explicitly working 
through the example f ( n ) = n . )  Indeed, if we allow A to increase continuously, we 
notice that, on account of its component S ( v ) ,  D(A)  oscillates violently as A advances 
from one integer to the next. Hence we try to secure convergence by suitably averaging 
D(A)  over a finite range of A before allowing A +CO. The smoothing process should 
assign no special role to integer values of A ; we can see this by recalling from the start of 
8 2 that n = LsZ/27rc and that the physical cutoff should be a smooth function of sZ 
independently of the precise value of L. The method to be given amse from an attempt 
to implement these ideas as simply as possible; with hindsight one realises that other 
similar prescriptions, though perhaps equally plausible prima facie, would either fail to 
secure convergence for any wide class of summands, or would fail to produce a 
prescription for D compatible with the fundamental definition of 8 2 in cases where the 
latter leads to the AP or the Euler-Maclaurin prescriptions. 

Regarding the sum S ( v )  in (4.4), we observe that by virtue of (4.2) v and E are of 
course functions of A .  Nevertheless we now formulate the smoothing processes as 
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follows. Write S ( v )  = S(A - E ) ;  treat E as if it were a continuous variable independent of 
A ,  and formally average S(A - E )  over the permitted range 0 G E < 1, keeping A fixed; 
call the result S(A), and substitute it for S ( v )  in (4.3); and finally take the limit A +CO. In 
other words we define 

1 

S(A) = 1 d s  S(A - E ) ,  (4.5a) 
0 

15 = lim {S(A) - I (A)} ,  
A - S  

(4.56) 

The compatibility argument showing that = D was mentioned at the beginning of this 
section. 

When this &-averaging method (4.5) can be implemented at all, it is generally very 
easy to do so; the reason lies in the fact that right from the start it is permissible to 
approximate all expressions appropriately to large A and v, and to drop all terms which 
can be recognised as due to vanish in the limit A + 00 and v + CO. It is also useful to keep 
in mind that if lim,,,S(v) = S ( C O )  is finite, then limA,,S(A) = S ( o 0 ) .  

The crucial step of treating S ( v )  as if v were continuously variable clearly depends 
on an analytic continuation off and S ;  in principle as in practice this is achieved through 
Taylor series, which need converge only within a circle or just over unit radius around A ,  
i.e. around any arbitrarily large value of n. But if for simplicity we assume or pretend for 
the moment that the Taylor series for f ( n )  converges for all n, then we can gain some 
useful insight into the mechanism whereby the E- averaging process secures con- 
vergence. To this end we define the derivative operator A : A Y  = f ( r ’ ,  and symbolise the 
Taylor expansion by f ( n )  = exp(n A)f(O). Then we can write 

To calculate $ ( A )  from (4.6) and ( 4 . 5 ~ )  we need 
1 Io dE e ( A - € + l ) A -  - eAA(eA - 1) /A;  

substitution into (4.6) yields 

Expressing I ( A )  in the same symbolism we have 

(4.7) 

The A-dependent terms cancel between S(A) and I ( A ) ,  so that the subsequent limit 
A +CO becomes redundant; substituting (4.7) and (4.8) into (4.5) we obtain 

6={ - 
.-If((). 1 
eA-  1 (4.9) 

It is easy to see that &(N) is obtained from (4.9) simply byreplacingf(0) on the right by 
fW. 
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An immediate and important application of (4.9) is to the summandf(n) = exp(cyn); 
since this is an eigenfunction of A belonging to eigenvalue cy, we have, rigorously in this 
case, 

(4.10) 

Of course the same formula would emerge directly from (4.5) without any appeal to the 
symbolic operations with A .  It is discussed further in Q 5.3. 

G{e""}= {-$+  cy - I / ( e *  - I)}. 

5. Examples 

We aim to illustrate the methods described in Q Q  3 and 4, to compare them as to 
convenience, and also to assemble those results most likely to be needed in practice. 
The integrals we quote are standard in the sense that they can be found in large enough 
collections of tables (e.g. Dwight 1961 and Groebner and Hofreiter 1958 jointly); of 
course this does not imply that they are easy to evaluate from first principles. The 
examples on powers and exponentials should be considered in the light of the remarks 
at the end of Q 2 on the lack of a priori justification for evaluating D by analytic 
continuation. 

5.1. Logarithms and related summands 

Consider the summandf(n) = ln(n + q), taking 77 > 0 to avoid singularities (but note the 
remarks in the paragraph below equation (2.13)). 

The AP formula (3.5) gives 

1 05 

M77 +ip)-ln(q -b)} 
"05 

whence 

a{ ln (n+q)}=  --{In r(q)-(q-i)in q+rl-+ln2.rr}.  (5.2) 

From this we can obtain the result for f ( n )  = ( n  + T I ) - '  by differentiating with respect to 
7 7 :  

B{(n+q)p l}=- ( j (u )+ ln  q- iq ,  (5.3) 

where + ( z )  = d In T(z)/dz. For later use we record also the result for DR(N = l), 
obtainable from (5.3) by replacing 77 + (77 + 1): 

f ( n ) = l / ( n + q ) :  D ~ ( N =  I ) =  - ~ ( q . t l ) + l n ( r l + l ) - ~ ( q + l ) ,  (5.4) 

and its limit as + 0, 

f ( n )  = l / n  : DR(N = 1)= y -' 2 ,  (5.5) 

where y = -4(l) is Euler's constant. 
If the prospect of evaluating the integral (5.1) from first principles does not appeal, 

we can fall back on the &-averaging method. The programme is to find §(v) = §(A - 8 ) ;  
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approximate it for large A ; average over E to find 3; calculate I ( A )  for large A ; and to 
take the difference. Thus: 

” 
~ ( v )  = --;In 77 + In(n + 7 7 )  

,I = 0 

(5.6) 

Only the term In T ( v  + 77 + 1) is affected by &-averaging, and as A +cc we have, by 
Stirling’s formula 

In !?(A + q  + 1 - E )  =$ ln  2 ~ - A  + ( A  - E  +v ++) In A +O(A-’). 

Under 
the result into (5.6) we obtain 

de . . . , we have E + $ while the other terms remain unaffected. Substituting 

(5.7) S(A) = {  - 5  In 77 -In r(q)+t In 2 ~ - A  + ( A  + 7 7 )  In A)+O(A-’). 

I ( A )  = I^ dn ln(n +v) = ( ( A  +v) ln(A +v)-A - 7 7  In 7 7 )  

Next, 

0 

‘ ( 7 7  -77  In T - A  + ( A  1-77) In A}+O(A-’). (5.8) 

Combining (5.7) and (5.8) we see that the A-dependent terms cancel (apart perhaps 
from those of O(A-’)), and in the limit A + CO we reproduce the result (5.2). Notice that 
nothing more abstruse has been needed than Stirling’s formula; in particular, recondite 
integrals like (5.1) have been sidestepped. 

5.2. Powers: f (n)=nP 

In order to allow convergent and divergent cases to be compared (i.e. to avoid the 
singularity at n = O) ,  in this subsection we focus attention on DR(N = l ) ,  ( D R  for short), 
i.e. symbolically 

We shall need 

(5.9) 

(5.10) 

and the functional relation for the 5-function: 

r ( t ) l ( z )  = ((1 - z ) ~ ’ - ’ ~ ’ / c o s ( ~ z / ~ ) ;  (5.11) 

and recall that ((2) has a pole at z = 1, where it behaves like 

( ( 2 )  = 1 /(z  - 1) + y + O ( / z  - 11). (5.12) 

5.2.1. When p < -1, sum and integral converge separately, and 

D R =  - i + ( ( - - p ) + l / ( p +  1). (5.13) 

5.2.2. When p = -1, the result is already known from (5.5); by virtue of (5.12) it agrees 
with what one might have guessed (but not established) by analytic continuation from 
the convergent case (5.13). 
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5.2.3. When p > - 1  we need one of our prescriptions. The e-averaging method 
applied directly is not convenient because there is no simple expression for E," n ', unless 
p happens to be an integer. On the other hand the AP method is convenient only when 
p 2 0, so that (3.5) can be used. Whertp < 0, divergence at p = 0 forces one to use (3.4), 
which yields an unmanageable integral. Hence we reserve the intermediate range 
-1 < p < 0 for separate treatment. 

5.2.4. When p a 0 ,  we use formula (3.5) which yields D rather than DR: 

P P  
m 

= -2i sin(.rrp/2) [ d p e Z n p  
- 1' 

(5.14) 

Notice that D vanishes when p is an even integer. Now there is no avoiding the integral: 
one obtains 

D = -2 sin(.rrp/2)r(p + ~ ) l ( p  + 1) / (2~) '+ ' ,  

which by the aid of (5.11) reduces to 

Subtracting from this 
"1  

(5.16) 

we recover for DR = D -DL the expected expression (5.13). 

5.2.5 When -1 C p < O ,  we are forced to use a special trick, exploiting within the 
framework of the e-averaging method the result given by Hardy (1949, equation 
13.10.7) : 

Noting that 

and with an eye on (5.17), we write (cf equation (4.3)) 

p < 0 .  (5.17) 

(5.18) 

As h + 00 and Y = [ A ] +  CO, the final term in (5.18) vanishes (since p < 0);  and since the 
contents of the curly brackets approach the finite limit l ( -p) ,  they are replaced by this 
value after &-averaging (recall here the paragraph following equation (4.5)). Accord- 
ingly, we have again recovered the expected result (5.13). 
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5.3. Exponentials: f (n)  = exp(an) 

We revert to calculating D itself (rather than DR),  i.e. symbolically 

(5.19) 

In the convergent case, a < 0, equation (5.19) yields directly 

D =  -1 z - l / ( e a - l ) + l / a .  (5.20) 

We have already seen, at the end of 8 4, that the &-averaging method gives this same 
result for all values of a.  By contrast, the AP prescription (3.5) yields 

(5.21) 

which converges only when Ib 1 < 27r; and one can easily check that formulae of the type 
(3.3), with whatever choice of 4, also diverge beyond this range of b. However, when 
convergent, (5.21) does reduce to (5.20); this agreement is important since it underlies 
the argument (at the start of Q 3) about the wider compatibility of the AP and the 
E -  averaging methods. 

The poles of D at a = i(27rr), (r = *l ,  *2, , . .) reflect a peculiar tuning of the original 
summand F(a) to the length L of the system. From the discussion at the start of Q 2 we 
see that f ( n )  = exp(an) implies F ( n )  = exp(An),  with CA = (aL/27r); and a = i(27rr) 
implies CA = irL. 

5.4. Exponentials: f ( n )  = exp(anP) 

We consider only real positive a, and p > 1 ; the prescriptions of Q 3 are then appro- 
priate. With 1 < p 3, the condition ~ / 2 p  < 4 < 37r/2p still admits the convenient 
choice 4 = 7r/2, i.e. use of the simple AP prescription (3.5); but with p > 3 one is forced 
to chose 4 < ~ / 2 ,  and to fall back on the generalised version (3.3). Then the obvious 
choice is 4 = r / p ,  and (3.3) yields, for D = DR(N = 0): 

No further simplification seems possible, except for an asymptotic expansion when a is 
large. 

Appendix 1. The Euler-Maclaurin formula 

A l .  1 Introduction 

The Euler-Maclaurin formula (EM in the following) has been relegated to the appendix 
because, for actually evaluating D ,  it is generally less convenient than the other 
methods?. Nevertheless it merits attention, partly because by tradition it is the first tool 
that comes to hand for dealing with the difference between sum and integral, partly 
because in several cases it does readily provide a convergent expression for D at least in 

* Its relative popularity is due to the fact that it can usually yield the asymptotic expansion in parameters like q 
when f(n) = In(n + q )  or ( n  + q)-'. 



1022 G Barton 

principle, and partly because it has links both with the &-averaging and the AP 
prescriptions; its compatibility with the latter is discussed by Hardy (1949), and its 
compatibility with the former will be proved in § A1.4. This proof will naturally not 
involve formal manipulations like those in which we indulged at the end of 0 4. 

We shall need the Bernouilli numbers defined by 

m 

= 1 BstS/s! ,  
s = o  

(Al.1) 

the sums converging for It1 < 27r. Comparison shows that 

Bo= 1, B1= -’ 2, BZsil = 0,  BZs = (-1)’+’gs f o r s  2 1. (A1.2) 
1 1 Other numerical values are B2 = i ,  B4 = -m, B6 = 42. As s + CO one has 

(27r)2’B2v/2(2s)! - (-l)’+l(l + 0(2-2”). (A1.3) 

The Bs satisfy the remarkable identity 

( B  + 1)‘ = B, + 6,1, (Al .4)  

where on the left one identifies B 4  = B,. Finally one has 

Bs+l/(s + 1) = -[(-SI, s = 1 , 2 , 3  ) . . . .  (A1.5) 

A.2. The Euler-Maclaurin prescription 

Our basic tool is the Euler-Maclaurin identity valid for any sufficiently differentiable 
function h ( n ) :  

n2 

h ( n ) -  r dnh(n)  

(A1.6) 

(A1.7) 

Identifying h ( n )  = f ( n I A )  we now impose the following conditions on it, i.e. on its 
factorsf(n) and g(n1A) .  It must be possible to choose 2k so that: f ( n l A )  is differentiable 
2k times; all the derivatives in (A1.6) vanish as n2+c0; the derivative f i2k’ (n lA)  
vanishes fast enough for the integral on the right to converge as n2+co; and this 
convergence is uniform in A ,  so that lim A +CO exists and may be taken under the 
integral. (Appendix 2 shows what can happen if this condition is ignored.) The specific 
consequences for f ( n )  itself will be spelled out below. Under these conditions we can 
allow n2+co: the terms h‘””’(n2) all vanish, and the difference between C” and X’ 
disappears; writing n l  = N, we obtain, in the notation of equation (2.10-13), 

( A 1 . 8 ~ )  
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(A1.86) 

Unfortunately, as a rule the remainder? R2k  in (A.8) fails to vanish as k +CO, and the 
series can be used at best as an asymptotic series in some suitable parameter, for 
instance in q when the summand is f = ln(n + 7). 

The no-cutoff limit ( 2 . 7 )  implies f'"(N1A) + f ( r ) ( N )  as well as f (NlA)  + f ( N ) .  We 
now take this limit in (A1.8), having first chosen 2k large enough to allow (A1.86) to 
continue to converge in the limit (see below); that such a choice of 2k  be possible is the 
chief restriction on the summands f ( n )  amenable to the EM method. This yields 

(A1.9) 

(A1.10) 

This is our end result, namely, after addition of DL, the EM prescription for the 
functional 9 { f ( n ) }  of equation ( 2 . 8 ) .  

As regards the convergence of the integral in ( A l .  10) note the following. By virtue 
of (A1.8) the factor X 2 k ( n )  is a periodic function of period unity, and its integral over a 
period vanishes$. Hence, by breaking up the integration at conveniently chosen points, 
R2k  ( N )  can be expressed as an oscillating series which converges provided the factor 
f '2k ' (n)  decreases monotonically for large enough n ; this follows from the standard 
argument from Fresnel diffraction theory (e.g. Born and Wolf 1975, who credit the idea 
to Schuster 1891; for recent references to the summation of alternating series, see e.g. 
Johnsonbaugh 1979). Accordingly, the f ( n )  covered by the EM prescription (Al.9-10) 
include all algebraic and logarithmic functions bounded by some power n as II + 00, 

since for all these f ' 2 k )  is bounded by np-2k,  and we need merely choose k so that 
p - 2 k  < 0. That f belong to this class is sufficient but not necessary, as is shown by the 
example of exponentials exp(an) with la1 <27r in § A1.3. 

A1.3. Applications 

For the actual evaluation of D,  the EM prescription is convenient only if the series in 
(A1.9) either terminates, or if it converges and can be summed in closed form, which 
happens only in the following two cases. 

When f ( n )  = n p ,  with p a positive integer, the series terminates at s = = p  + 1. 
Choosing 2k  3 p  + 1, R2k vanishes and (A1.9) becomes 

f The word 'remainder' reflects the role of R with respect to the index 2k,  and not with respect to the 
argument N ;  no question arises of letting N +  m, since the remark following equation (2 .12 )  shows that this 
would merely remove DR from the argument, and transfer any difficulties, unchanged, to DL. 
i In fact X z k ( n ) =  - B 2 k ( n ) / ( 2 k ) ! ,  where the Bernouilli polynomials B, (n )  are defined, for O S n  s 1, by 

m 

f e"'/(e'- 1) = 1 B , ( n ) t ' / s ! ,  
F = n  

and for other n by periodic continuation. 
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Adding and subtracting the terms with s = 0,l  (cf (A1.2)), and using in turn (A1.4) and 
(A1.5) we obtain 

1 
= - i + L ( - p ) + -  

p + 1 7  
( A l . l l )  

which is our known result (5.13). 
When f ( n )  = exp(an), the series in (A1.9) becomes 

2 k  2 k  

s = 2  s = o  
- 1 B,Lu’-~/s!= - ( l / a ) (  1 B s a s / s ! - l + a / 2 ] .  ( A l .  12) 

Comparison with ( A l . l )  shows that, provided Id < 27~, we can allow k + CO (when the 
remainder term must vanish), obtaining 

D R ( N = I ) =  - $ + l / a - l / ( e a - l ) ,  (A1.13) 

which is the known result (4.10) 

A.4. Compatibility with the &-averaging method 

Compatibility will be shown by proving that the &-averaging prescription (4.3-5) can be 
recast in the form (A1.9-10) with N = 0, provided both prescriptions make sense, and 
subject for technical reasons to certain restrictions spelled out following equation 
(A1.21) below. We start by rewriting D ( h ) ,  equation (4.3), by aid of the EM identity 
(Al .6) ;  of course in the latter we now retain the correction terms for the finite upper 
limit, including the differencef(v)/2 between E’ and E”, and a term -sy^ dnf(n) to allow 
for the difference between the upper limits of the integrals. Grouping the terms by 
hindsight: 

(A1.14) 

As before, the index 2 k  is chosen so that the first integral converges as v+m; i.e., 
f‘2k’(n) must eventually decrease monotonically as n +CO.  

As instructed in (4.5), we replace v by A - e  and carry out the integration over F at 
fixed A ; meanwhile, we drop at once any terms that will vanish as v + OD and A + CO. On 
the right of (Al , l4 ) ,  the first sum is unaffected since it does not involve v. As regards the 
remainder term (involving X2k), since by assumption the integral converges as v +CO, 

the &-averaging makes no difference to it ultimately, and we immediately replace v by 
OD in this term. Hence, under &-averaging the contents of the first pair of curly brackets 
in (A1.14) become identical to the desired end result, namely to (A1.9, 10) with N = 0. 
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It remains only to show that the contents of the second pair of curly brackets in 
(A1.14) vanish under E -averaging, namely that 

lim W(A)= lim lo dE{ ~ f ‘ ” - ~ ’ ( h  - ~ ) + i f ( A  - E ) -  dnf(n)] = O .  (A1.15) 

The crucial step is to expand f‘”-’’(A - E ) ,  f ( A  - E )  and f(n) in Taylor series around A. 
We need only assume, as already in 8 4, that these series converge in a circle of just over 
unit radius around A.  The integrations in (A1.15) are then carried out explicitly, and we 
collect together all the terms involving derivatives of a given order. After these 
straightforward manipulations, W(A ) becomes 

2 k  B, 
A -00 A -fX s = 2  s .  I:_. 

(A 1.16) 

where in the last step we have added and subtracted the terms with s = 0, 1, and have 
used (A1.2). If q + 1 s 2k, then, adding and subtracting also the term with s = q + 2, and 
using the identity (Al.4), we find 

( A l .  18) 

Hence the effective lower limit of the sum in (Al.16) is q = 2k, and we must finally prove 
the vanishing of 

( A l .  19) 

Now equation (A1.17) entails (writing C for any constant independent of q )  

using this in (A1.19) we obtain 

(A1.20) 

(A1.21) 

To proceed we must assume: that f ‘ 2 k ’ ( z )  decreases monotonically when Re z -+ CD not 
only for real 2, but for all z in a strip IIm z 1 < (+ < v0, cro > 1 ; (recall that it is already 
assumed that f is analytic in such a strip, since its Taylor series must converge within a 
circle of radius cr > 1 around any sufficiently large A ) .  Then, writing q = 2k + r, and with 

a circle of radius cr (1 < cr < cro) around z = A ,  we have 

f‘2k’r’(A)/r! = (1/2vi) dzf‘2k’(z)/(z - A ) r C 1 ,  

( 2 k + r )  If ( A ) l <  (maxlf‘2k’/)r!/crr, 
U, A 

(A1.22) 

+ The appeal to the following argument arose from a discussion with Dr J S Plaskett 
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where (maxu,Alf‘2k’l) is the maximum value of I f ” ” 1  on r. Finally, by (A1.21,22) 

(A1.23) 

The series converges (since by assumption c~ > 1) and hence W(A)  does indeed vanish as 
A +CO,  by virtue of our assumption about f Z k ) .  

Appendix 2. An inadmissible cutoff 

A simple but instructive example shows what can happen if a cutoff violates the 
analyticity assumption of the Abel-Plana prescription or the uniform-convergence 
assumption of the Euler-Maclaurin prescription. The expression 

g ( n  IA)  = A ’/[(A - a)’+ y 2 ]  (A2.1) 

contravenes both. (By contrast, the cutoff A2/ [ (A  + + y 2 ]  leads to no difficulties.) Of 
course, if one is in a position to choose cutoffs, the pathology we shall uncover merely 
alerts one to avoid such a g. But if one is concerned with a problem where the cutoff is 
actually known, and is given by (A2.1), then the conclusion is more important: for then 
it tells us that the true result for D is not obtainable by the AP or EM prescriptions, even 
though g satisfies the permanence conditions (2.7), and even if the final formulae 
9 { f ( n ) }  of both prescriptions converge. 

The danger is perhaps clearest in the AP method, for g has manifest poles in the 
positive half-plane at A = n * iy. If nevertheless we deform the contour as in 5 3, then in 
addition to the right-hand side of say (3.5) we obtain an extra contribution A from these 
two poles: 

(A2.2) f (A - iy) + T A  f ( A  +ir) A(A ) = --[ 
y exp(2~y-2.1r iA)- l  exp(2.rry+2.rriA)-l 

From here on we confine ourselves for simplicity to the trivial summand f(n) = 1, 
where the result with any admissible cutoff is D = 0, by virtue of (5.14) with p = 0. By 
contrast, with the cutoff (A2.1) the true result is 

(ezrp - 1) [(A2-p2+y2)2+4A2p2] 
4A 3p _-_ D(A)  = -1 dP , 

(A2.3) 

1. 1 
exp(2z-y + 277iA) - 1 

+ 

The first term is what one would have obtained by applying the AP prescription without 
recognising the illegitimate nature of the cutoff; and as A + CO this term does of course 
vanish. By contrast, the second term has no limit, continuing to oscillate indefinitely 
with an amplitude proportional to A ’. 

Since (A2.3) is exact for D(A),  it must equal the Euler-Maclaurin expression (A1.8) 
for the same quantity, demonstrating a posteriori that the final EM prescription (namely 
(A1.9,10) with N = O), which is identically zero, cannot be the limit of (A1.8), which we 
can write as 

+q 1 
y exp(2.iry - 277iA) - 1 

(A2.4) 
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Of course f " ' (0 lA) = 2 A 3 / ( A 2  + y2)2  does vanish as A + C O ;  but the integral R2 in (A2.4) 
has no limit, whence it cannot approach 

d: dn ,':it f '2'(n Ih)Xz(n) = 0. 

Indeed, one can see directly that RIA2 will continue to oscillate indefinitely with 
increasing A,  if one recalls that ~ 2 ( n )  is a periodic function, while f" ' (nlA)/A2 is 
essentially a fixed shape of width y localised near n = A .  
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